Mismatched nucleotides as the lesions responsible for radiosensitization with gemcitabine: a new paradigm for antimetabolite radiosensitizers.
نویسندگان
چکیده
Radiation sensitization by 2',2'-difluoro-2'-deoxycytidine (dFdCyd) has correlated with dATP depletion [dFdCDP-mediated inhibition of ribonucleotide reductase (RR)] and S-phase accumulation. We hypothesized that radiosensitization by dFdCyd is due to nucleotide misincorporations in the presence of deoxynucleotide triphosphate pool imbalances, which, if not repaired, augments cell death following irradiation. The ability of dFdCyd to produce misincorporations was measured as pSP189 plasmid mutations in hMLH1-deficient [mismatch repair (MMR) deficient] and hMLH1-expressing (MMR proficient) HCT116 cells. Only MMR-deficient cells showed a significant increase in nucleotide misincorporations (2- to 3-fold increase; P or=5-fold increase; P < 0.05), thus further implicating the inhibition of RR as the mechanism underlying radiosensitization by dFdCyd. These data showed that the presence and persistence of mismatched nucleotides is integral to radiosensitization by dFdCyd and suggest a role for hMLH1 deficiency in eliciting the radiosensitizing effect.
منابع مشابه
Preparation, optimization and toxicity evaluation of (SPION-PLGA) ±PEG nanoparticles loaded with Gemcitabine as a multifunctional nanoparticle for therapeutic and diagnostic applications
The aim of this study was to develop a novel multifunctional nanoparticle, which encapsulates SPION and Gemcitabine in PLGA±PEG to form multifunctional drug delivery system. For this aim, super paramagnetic iron oxide nanoparticles (SPIONs) were synthesized and encapsulated simultaneously with Gemcitabine (Gem) in PLGA±PEG copolymers via W/O/W double emulsification method. Optimum size and enca...
متن کاملPreparation, optimization and toxicity evaluation of (SPION-PLGA) ±PEG nanoparticles loaded with Gemcitabine as a multifunctional nanoparticle for therapeutic and diagnostic applications
The aim of this study was to develop a novel multifunctional nanoparticle, which encapsulates SPION and Gemcitabine in PLGA±PEG to form multifunctional drug delivery system. For this aim, super paramagnetic iron oxide nanoparticles (SPIONs) were synthesized and encapsulated simultaneously with Gemcitabine (Gem) in PLGA±PEG copolymers via W/O/W double emulsification method. Optimum size and enca...
متن کاملGemcitabine uptake in glioblastoma multiforme: potential as a radiosensitizer.
Glioblastoma multiforme (GBM), the most frequent malignant brain tumor, has a poor prognosis, but is relatively sensitive to radiation. Both gemcitabine and its metabolite difluorodeoxyuridine (dFdU) are potent radiosensitizers. The aim of this phase 0 study was to investigate whether gemcitabine passes the blood-tumor barrier, and is phosphorylated in the tumor by deoxycytidine kinase (dCK) to...
متن کامل(SPION-PLGA) ±PEG nanoparticles loaded with Gemcitabine as a multifunctional nanoparticle for therapeutic and diagnostic applications
Abstract The aim of this study was to develop a novel multifunctional nanoparticle, which encapsulates SPION and Gemcitabine in PLGA±PEG to form multifunctional drug delivery system. For this aim, super paramagnetic iron oxide nanoparticles (SPIONs) were synthesized and encapsulated simultaneously with Gemcitabine (Gem) in PLGA±PEG copolymers via W/O/W double emulsification me...
متن کاملIn vitro study of radiosensitization of PLGA-SPION nanoparticles loaded with Gemcitabine
Introduction: To increase the radiation therapy efficiency, two approaches have been employed which include increasing the dose delivery or modifying the biological response to ionizing radiation. This study aimed to modify the biological response to ionizing radiation by combination therapy using radio-sensitizer agent and anticancer drug. Materials and Methods:</str...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Molecular cancer therapeutics
دوره 6 6 شماره
صفحات -
تاریخ انتشار 2007